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EQUATIONS OF A SIMPLE FLAME SOLVED BY
SUCCESSIVE APPROXIMATIONS TO THE SOLUTION
OF AN INTEGRAL EQUATION *

G. Klein

ABSTRACT

The problem of an idealized flame whose underlying
chemical reaction is unimolecular, reversible, aand of tixc
first order, which has already been treated and sclved in the
referencées quoted belaw,is reccnsidered here (kinetic energy
of the gas stream being neglected). Its solution is made to
depend on the solution of an integral equation which contains
an unknown parameter whose eigenvalue has to be determined.

This equation is solved by a method of successive approxima-
tions.

* This work was carried out at tha University of Wisconsin Naval
Research Laboratory under Contract N7 onr-28511 with the Gifice
of Maval Research.
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1. INTRODUCTION

The problem of an idealized flame whose underlying
ckemical reaction is unimolecular, revarsible, and of the first
ordex, which has already been treated and solved in the refer-
ences quoted below,is reconsidered here (kinetic energy of the
gas stream being neglected). Its solution is made to depend on
the solution of an integral equation which contains an unknown
parameter whose eigeuvalue has to be determined. This equa-
tion is solved by ¢ method of successive approximations.

Except for miunor and obvicus deviations*, the nota-
tion is the same as that used in the first reference quoted; equa-
tions there are referred tc on the left margin.

*The only ones teing (cf. equations 1.1-1.3)

d
(11.7-27) ? d_;' = ZC-L (-eliminating the distance variables)

{11.7-25} R(x,z)= "€("‘,t) {-an essentially positive quantity)

X

l
]

(11.7-31) b=

{-for conciseness)

’s x3 L oo " 0 A3V PRI, WA AT AN CRY LI e e
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Flame cguatione. These are, in terms of dimensionless variables and

parameters, the equations of continuity (or chemical reaction), diffusion,
and energy (or thernel conduction}.

46 | _ 41
(11.7-25) } dz ,u"Q(":’) / 1.1
3
(11.7-28) g j‘%= j(x-ﬁ) , 1.2
(11.7-31 g =5 (@-Gu)-(z-7) . 1.3

Hot{ Boundary conditions. At the hot boundary chemical reaction,
diffusion and thermal conduction cease. Thus

(11.7-32j R(xy 3Tl = O : 1.4
(11.7-34) Xo™ G : 1.5
Equation 1.3 is the integrated energy balance equation, and by suitable

choice of the constant of integration the third boundary condition, that
the temperature gradient must vanish,

?(C”)'O ’

[
o

has already been taken care of.

Cold boundary conditions. If one assumes a conventional functional
form for ire reaction rate, where the latter does not actually vanish at
the cold boundary temperature, some care is needed in the stipulatica of
the cold boundary conditions. Experimentally, however, and in computa-
tion where in any case ore confines oneself to a limited number of decimal
places, the reaction rate can be taken as zero at and near the cold boundary
temperature. Thus in practice there i8 no doubt what the conditions should
be, they are analogous to thcae at the hot houndary, wiz.

R(xoﬁz’c)ao / 1.7
(11.7-35) %= Gl 1.8
1.5
7(Q)=0 ) k4
Auxiliary guantities. It is convenient to define the known linear
function
X#' Xw.yb(r”--t) ; 1.10
and ihe parameter | 1.11
9° .o
Lo by
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Elimination of the mass rate of flow. We consider the temperature
gradient and the concentration as the primary dependent variables.
From 1.3, 1.5, and l1.10,

*
G=-x +bg | L 1,12

so that if the temperature gradient is known, the fractional mass rate of
flaw, G, can be readily found.

Fundamental simultaneous equations. With 1.12, 1.10 equations
1.1, 1.2 may be written in the form

d :
?(l- ﬁ')=QR(x>t) 2 1.13

""‘*)'(\b*é%)? i 1:14

These equations have to be satisfied simultaneously, the solutions being
subject to the boundary conditions. It should be noted that this is an

eigenvalue problem; the parameter q in 1.13 is not known and dependson
the boundary conditions.

Special cases. In the following two cases the problem simplifies
considerably:

When d=1, it is clear from 1.10 that 1.14 is satisfied by
X x ¥ '
5 , 1.15

and hence the problem reducee to the solution of the single differential
equation

_i!-l
?5-, ?é .l R(x C) : 1.16
When§=0, equation 1.i4 gives
®
(11. 7-44) Xo™ b9, ) . 1.17

which when substituted into 1.13 again leads to a single differential

equatioan, 4
?8: + b
?5‘0( o/ (l =0R(x ‘} c) 1.18

This latter equation simplifies further if the reaction raie is linear ia the
fuel gas concertration.

S - ~wmre g s —— P e
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Reaction rate., The reaction rate may be expanded;
dR(x,7)
R(x,z3= R (x,,e)+ (x-x5) | 35 x+ , 1.19

oD
It will now be assumed that it is linear in the concentration. Thus

R(x,z) = (x-Xa) ¥(z) + R(x,,z) 1. 20

where ¥ (r) isa rapidly increasing function of T(cf. graph l) and the first
term on the right is the predominant one. Clearly, also

*
RG,Z)~ (x=x" )y (t) +R(x",z) . 1.21
It is useful to define the function (cf. graph 2)
_ T
Y(z,z,) = S f(z) dr . 1.22
T
For numerical illustration we shall take
=Yz ~Q+p) /2
(11.7-29). - R(x,z)s XxXe =(1-x)e £ ; 1.23

(cf. graph 3) which has already been used in the original treatment of this
problem. (cf. references 1, 2)* so that in this case (cf. graph})

~Yr -Gvg) /T
Yy-e +e P ) 1.24

The present method is, however, not restricted to this particular
functional form.

* The only constants entering are

Z,=-20 b- 5.531 1¢2
Z, = ,02 P /5‘: 1.08Y 7¢3 ,
¥ |
cf. footnote 22, p. 770 of reference 1 , where b= -1 F

The independent variable = is related to the temperature by <=

e
15000 2
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2. METHOD OF SUCCESSIVE APPROXIMATIONS

Outline. The method of solution adopted here is one of successive approx-
imation to the temperattu-e”&’rad ¢ni and it 18 essentially contained in the relations
(v)( _L_ }(vu) il w, )

d 2.1

o +<L+5 dx” )9(,/) ; 2.2

(cf. 1.13, 1.14), together with the boundary conditions.

Discussion. The differential equation 1.13 may be turned into an integral
equation, so tuat with the boundary conditions 1.6, 1.9 one has

R(x,r)
¢ ‘Lf S dr - (7))

g ) 2.3
* R(x,z
o=cli e dr-(r-z) 2 4
\
T
Thus, re__m “ )
-(t "t) z'—i ‘—?"_— e -2—'—- 2 fod
'] j R(x t) J 5 ’ 2
0
| | !‘”R(xr)
== : dr ; 2.6
Z.-Z, ;
N
Also, by 1,14, 1.10,
dix-x"; |

-8
- — (x-x)= "3 b

dr 6? R

and from 1. 25
* * ‘v \
R(X,r) - R (X ,C)"' (X— X )1}/‘(!/

[\
[e o)

Suppose an approximation q, “to ¢ is knowan. It is assumed that
2.7 gives a corresponding approximation to x - X ; and chat the two together
can then be used to give a better approx)matmn.g( » from 2.3, with the use
of 2.8. Successive approximaitions to the pa.ra.meter q are similarly found
fremn 2.6. The method is clearly justified if ane obtains increasingly convergent
results as is the case in the numerical example considered. Since the convers
gence is faijrly rapid, almost any suitable lowest approximation is found to
yield unique resuits; the chcice of lowest approximations for par

ticular values
of § will be considered in the tollowing sections.
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Scheme of successive approximations. In accordance with this scheme

we thus have, when 9"" is given,
d ., O x !

-4
dr(x -X )= 3(’(»)(2((“)_){'):“ 'b—"lo

7

R(xw,)z)m R(x*,z)+(x(”-. x*) y(z)

7

(¥+1) Too = Lo
° =

4 e R(x(w z)
——— dz

)

%

Z )
wy ey O R(x2)
-9 —-:(7)— dz - (7,-T)

r

2.9

2.10

2.11

2.12

The ratio in the integrals cf 2.12, 2.13 for r=Z, is found by

application of L'H8pital's rule. (cf. graph 4)

ad
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3. CASE OF DIiFFUSION NEGLIGIBLE

Method. In the case of J=0
solution of equation 1.18 which with 1.2]1 becomes

et v T o . g 5. A

i
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the problem depends essentially on the

e

4 *
9("3%)=1§b2y(r)?+R(x,r)} 3.1
Hence, cf. 2.12, 2.13, 1.22, 2.2, 7 "
(¥1) (V+1) Ir . © (X i)
? =€ {b}('?”"w; ri Ty dr}" (to=T) 3.2
(¥+1) Co=%,
9 e R(x* 1) 5
b?(tc,t”)*- !;a . =5 dc 3.3
x(v“). x*+ b?(wl) 3 4
In the calculation of 3.2, 3.3, use is made of
[ » [_ dR(x*,t)I
g(" 7t) . dz_ Teo 3.5
v To) TR 7)
? Q {b"(r)-fl addl f
: ‘z L 7 - -0 =
o ? sz
Lowest approximation. The following chnice of a lowest ('input!)
approximation has hzen found to lead to convargent results; we take as
lowest approximation the solution of 3.1 with the last tczin neglected,
viz. {cf. 3.2}
¢ . N
”:qmbqf(z't“)_(r‘”-t} P 3.6
where
a(o)_ T %
¢ b¥(z,z,) 3.7
That is,
7o} ’ ){{”z}tw) Zo-T
=(z,-T Te—————— %R .
% ol [ e 3.8
Also, by 3.4, 3.8, 1.10,
£ bz V(z,Tq) , )
S oy —= .9
=TT Ve 2
which may also be written
(&)
LU JCAN 3.10
0T Xe W (F %) :

e S 30
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Both the functions 3.8, 3.10 have the character one would expect of the
actual solutions.

For the calculation of the following approximation, # s/, one needs

{R(x",c)] [ ‘dR(x’:t)" (GT) P (2D ]
M g - 1
?() dt sz / Y(tg,ro) f . 3 1

z, =

4. CASE OF LINEAR DECREASE OF FUEL GAS

Method. in the case of O=] the outstanding feature is

X=X 4.1

ci. 1.15, and it remains to solve the equation, cf. 1.16

?(1—3%)-1R(x*r) ) 4.2

)

Hence the scheme of successive approximations, 2.12, 2.13, simp lifies
to

(‘) ') ",w’to
+
q - L'.R(x*’t.) R 4.3
j —y— 47
%
i *®
) (P+1] r CH e

) dr - (UG—U)

b9

. [amx",z)
Ru;)] T,

- -2
9'(:w | -~ R(x’:z) . 4,5
7, 9 v-1) =
(A

4.4

with

-

Lowest approximation. Here we have arbitrarily taken the parabolic
approximation

7(0)“3‘ 1 (ta-t)(r" z-o)

zZ, ) 4.6

in view of 2.5 it is clear that the constant coefficient on the right of
4.6 is immaterial; it may at worst give an unrealistic value for tim.

Clearly
R(Xtt) [ dR(xtz)
(c) = dz_ . 4.7
A S -

e e e S s i W

e sl e @
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3 5. GENERAL CASE

Method. In order to simulate conditions of a real flame one should take
o< & < | , and the relations 2.9-13 have to be used in their full
generality.

The solution of 2.9 with 2.10 may be written
5 ‘-'Cr' 1, dc [ "f: T dT
- ) .
x(ﬂ; x‘t_a_ebea g f sz %v)

- X e ac 5.1
T
where &, is any value, § <&, f»but most conveniently taken in the

neighborhood where one expects the maximum of ¢ to occur. The suc-

cessive approximations are then obtained fom 5.1, 2.12, and 2,13,
with the use of 2.11 and ™-n
_ 32(7)'1 ) R(x ,7:)
. 4t J., "1 g™ A 5.2
; -3 .
% Liows..
{ d(x -x )] _ 5 b =
dz lr P - ; 5.3
- d 47
dr i,
3 o) x , O *
! [_ dR (x" " ) : r_ _d-r‘\’(x RN by - alx - x")
de |, dt J l dr o
: -
i o) (»)
| R ) dR(x”,2) /[ dg™
[ ?ﬁ») ) dz / dz ' 5.5
Cao ZOO / Too
Lowest approximations. One could again take 4.6 or 3.6 as

lowest approximationy.

Since in the present treatment we have already calculated 9, and
the following form suggeats itself §=0
‘}-zs, s g ggesis 1

= i- 5.6
?é «S%“ + (i )1’$=0

san

which has in fact been found to lead to convergent successive approximations.
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Starting from 5.6 use has to be made of the following formulae which

we state for sake of completeness:
d ( dR(x*z)] '
- ZS- - L -t
[ T 'L “ zl"{ ’*‘4‘13..[ dz ]: -!} ) 5.7
I do 1 | ,
l_ ::-O ='2"{[1 LY‘(!,) ’-l-(s[% b\,—(t )~ ,-’41180[ M] } 5
z - T
© ® , 5.8
d
- __?_é. = 8 - ?8:! ’*‘(l—b) [~ A%'o_ T
dz dr | de g '
9% L™

and relations 5.3-5 for 7»:=0.

. S
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6. ON THE NATURE OF THE SOLUTION |

Equation 1,13, and more concretely, equation 4.2, suggest a general
cousideration of the differential equation of the form

-— I -
y C=qh=F 6.1
where
F=F(x) 6.2
increases asymptotically from zero, rises to a maximum, and has its
first (and possibly only) zero at x= x,, so that
! 4 5
(F), =0, (F'), <0 . 6.3
Throwing 6.1 into the form
2 .
4 7 4
one obtaina im:inediately the following properties connected with tae
integral curves:
Locus of stationary points: Y= F(x) 5 (x+x) > 6.5
Locus of points of infinite gradient: Y= 0 : (x % x,) F 6.6
Locus of points of gradient unity: X - x , (y+0) 6.7

By the standard method one finds from 6.1 the locus of the points

of inflexion: F
———
V-4 = (1 i-uF’) b8

: S ; ’ L
which is imaginary where F'> ;|

There is evidently a singular point for the integral curves at (x,,0)and
it is found to be a saddle point. From 6.1 it is easily shown that the two
singular solutions which we denote by 4, and '312. where

((f'))(|’= 0 U (""l,)x; <0 &

o~
O

(lf'g)x“o > ((#'/)X,>O 7 6.10




/‘;e;._.

S 2 00 g

GraEh 10
cf. section 6

Function F(x)

-——+——-  First Singular Solution

—e+.—«.— Second Singular Solution
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have their first two derivatives at (x, ,0) given by
o R
(%@(=i('*¥:—45')
' X 6.11

o~

r ” I
(4", - [ 1 -3y’ J 12
¢ 4 X, : ’
It is the singular solution ta, which is of interest in the flame problem.

Cf. Graph 10.

Also, the locus of the points of inflexion has its first two derivatives
at (7»,,0) given by

(Y, -2 (12fi-ur” ), ,

6.13
N - F,v y/
At ) = / ‘ ] :
Y X, \LF -2y 1 5 6.14

so that the two branches of the iocus of the points of inflexion, Y, and

); » are tangent to the singular solutions. One finds the following
properties:

— N 14
. 7 £ ¢ Y
{-sign) l€,=\/, <0, "”_'—,; >0 | — >0 6.15
r
w -
(+ sign) %:yl’ D0 % 20 %, >0 6.16
FII

s M
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Results

The validity of the method in this simple case suggests that even more general
flame problems inay be treated as integral equation problems to be scived by a method
of successive approximations.

in the particular case considered ihe eigenvalue pirameter q , related to the
flame velocity, appears io depend linearly, or very nearly so, on & which is re-
lated to the diffusion coefficient, {If this dependence is rigorous, it should be
possible to justify it analytically.)

Generalizations

It may be of interest to investigate the (minor) modifications re¢uired when the
specific heats of the components are unequal, and when the thermal conductivity
and diffusion coefficient are not constants; also the case where the kinetic energy
of the gas stream is not neglected.

It would be of more immediate interest, however, to essay the method on a more
general idealized flame problem in which the chemical reaction is of the second order.
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(in the order in which they occur)

(11.7-27) g reduced temperature gradient
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1]

"t

(11. 7-16) T , reduced temperature

R ., reaction rate (decrease of fuel) cf. footnote p. 1
(11.7-29) 'F . reaction rate {pioduction of fuel)" L

b , a constant, related to specific heat, ¢f. ™

Y ., ratio of spzcific heats L S
(11. 7-22) /d , Treduced energy of reaction, 1.23 .» »
(11.6-3 ) G , fraction of the mass rate of flow of fuel
{1i. 7-19) /a , reduced mass rate of flow

X , mole fractjon of fuel
(11.7-23) d , reduced coefficient of diffusion

., eigenvalue parameter, 1.11
, afunctionof T , 1,20, 1.24

the latter function integrated, 1, 22

—- & = .0

(11.7-16) » absolute temperature, c¢f. footnote p. 4

Suffices 0 and o0 refer to the cold and hot temperature boundary, respectively.

Exponents (#) refer to the order of apprcximation.
Sccticn 6 anly:

X , independent variable
Y dependent variable

r , a fuaction of X

X, Y , ordinates of various loci - not solutions of 6.1

0 o e A0 . s
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TABLE 1,
{Basic Functions)
3 'S : x 4
T T ,1{,4:) 10 W(rr,) e .x'(‘xs“ ) R(x,z)io
3000 .20 6.767 663 0 . 004 391 0 |
2900 .19 3., 5.691 61 .414 7 . 041 265 2.141 2
2800 A8 Ge 4,714 36 . 761 2 078 139 3.553 7
2700 .18 3. 875 2% 1.047 3 . 115013 4.363.8
2600 B Ly TR 3.1253 14 1.272 8 . 151 888 4.6915 M
2500 .16 6... 2.452 45 1.466 8 .188 762 4,649 0
2400 .16 1.932 65 1.€129 . 225 637 4.338 8
2300 .18 3. .. 1.472 35 1.726 4 . 262 511 3.852 6
2200 .14 6... 1.094 38 1.811 1 . 299 385 3.269
2100 14 . 790 83 1.873 9 .336 260 2.655 8
2000 B B i w 553 289 1.913 0 .373 135 2.062 7
1300 12 6., .372 77 1.948 9 . 410 009 1.527 7
1800 212 . 240 40 1.968 8 . 446 884 1.074 0
1700 .11 3... . 147 24 1.981 7 .483 758 .712 2
1600 .10 6. .. .084 82 1.989 1 . 520 633 .441 6
1500 .10 .045 40 1.993 4 .557 507 - .253 1
1400 09 3. .022 28 1.995 5 . 594 381 L1321
1300 08 6. .009 75 1.996 6 .631 256 .061 5
11200 08 .003 73 1.596 9 . 668 130 .024 S
1100 07 3.. .001 20 1.997 1 . 705 005 .008 4
10C0 06 6. . .000 31 1.997 1 . 741 879 .002 3
900 .06 .000 06 1.997 2 L .778 754 .000 5
800 .05 3... .000 01 1.997 2 .815 628 .000 1
700 .04 6... .000 00 Z 1.997 2 . 852 502 .000 0 Z
600 .04 .000 00 1.957 2 .889 377 .0000
500 <03 3. .000 00 1.997 2 .926 251 .000 0
400 .026... .0060 00 1.997 2 .963 127 2000 0
300 -. 02 .000 00 1.997 2 .000 0
Graph 1l Graph 2 Graph & Graph 3
P- 5 P- 5 p. 15 p. &
Eq. 1. 24 Eq. 1.22 Eq. 1.17 Eq. 1.16
i-dR(xft)
L dz‘ -‘tﬁ
| - 038 235

e
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TADLE 2
(Results)
?5'0 7‘53/ XEOG ?5: 3/* xs- 3/A’- ZQ-"
0 .004 391 0 L .004 4
027 72 .021 61 .194 6 .021 7 .049 5 .006 6. ..
.050 36 .040 24 .356 7 .040 4 .094 8 .013 3, ..
.068 38 .056 00 .493 2 .056 2 .142 0 .02
.082 2% .069 00 .606 8 .069 4 .185 @ .0266...
.092 51 .07 4 .700 4 .079 9 .229 7 .0333,..
.099 48 .087 31 L7759 .087 9 .274 1 .04
. 103 72 .092 92 .836 2 .093 5 .318 1 .046 6. ..
.108 51 M .096 41 .883 0 .097 1 .361 8 .053 3...
. 105 35 .09795 M .919 0 .098 5 .405 0 .06
.103 47 .097 77 .945 4 .098 3 .447 17 .066 6. ..
. 100 31 .096 09 .964 8 096 6 .489 8 .073 3,..
.096 05 .093 11 .978 2 .095 5 .531 0 .08
.091 02 .089 07 .987 2 089 4 .571 7 .086 6...
.085 38 .084 19 «'992 9 .084 6 .611 7 093 3,..
.076 34 .078 66 .796 3 078 8 .650 8 .10
.073 02 .072 66 .995 3 072 7 .688 9 .1066...
.066 54 .066 338 .999 3 066 4 .726 1 w13 B
.059 94 .05% 8 .999 7 059 9 L7620 .12
.053 31 .053 29 .99 9 .053 3 .796 5 .126 6. ..
.046 66 .046 66 1.0000P .046 7 .829 7 .133 3,..
.040 00 .040 00 1.000¢0 .040 0 .861 3 .14
.033 33 .033 33 1.0000 033 3 . 891 4 .146 6. ..
.026 67 .026 67 1.0000 026 7 .919 3 .1533,..
.020 00 .020 00 1.00060 020 0 .944 9 .16
.013 33 .013 33 i.0000 013 3 .967 8 .166 6...
.006 67 .006 67 1.00600 006 7 .9866 8 173 3...
0 1 0 1 .18
Graph 6 Graph 6 Graph 8 Graph 8
B 12 p. 12 p. 15 p. 15
Md
! ‘%g} .57 d%-'l =-346
az 1 € e
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5
TABLE 3
{Parameter Values)
| %
Lowest &+0 : D=1 3> %
; . Eq. 3.8 Eq. 4.6 Za. 5.¢
i SPERGE 4 &0 - 9 N ,WLC! P69 . (v)
1 s 9" W 4 () 9 W)
0 162.9 501.3
1 124.7 689.5 136.0 752 348 1923
2 122.5 677.4 458.1 2 534 328 1814
3 121.6 672.6 383.0 2119 337 1 862
4 414.4 2292 334 1 849
5 398.5 2 204
6 407.2 2 252
7 402.5 2 226
8 405.0 2 240
9 403.5 2 232 ‘
Values
' previoualy 672 2 240 1 840
i obtained by
numerical
' integration,
¥ (cf. ref. 2) 3
f cf. graphs
i 435
i
;
¢ Note:  Theugh the numerical results are correct o three rignificant figures,

no pametalgng accuracy has been aimed at in the computations as the object has
been solely to demonstrate the validity of the method; thus, all integrations
have been carried out by trapezoidal surmmation with cnly 27 egual intervals.
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